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Abstract: Signaling pathways induced by the proinflammatory cytokine tumor necrosis factor 

alpha (TNF-α) play a key role in the cellular responses to inflammation and injury. In the car-

diovascular system, TNF-α-activated signal transduction pathways may contribute to vascular 

dysfunction, development and progression of atherosclerosis, and adverse cardiac remodeling 

following myocardial infarction and heart failure. This review addresses the role of TNF-α 

in vascular physiology and disease. Furthermore, the therapeutic benefits of systemic TNF-α 

antagonism in cardiovascular and autoimmune inflammatory diseases are summarized and 

critically discussed.

Keywords: TNF-α, vascular inflammation, atherosclerosis, shear stress, heart failure, TNF-α 
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TNF-α signaling
Tumor necrosis factor alpha (TNF-α) was described in 1975 as a circulating antitum-

origenic cytokine.1 Originally, TNF-α was thought to be produced mainly by immune 

cells like activated macrophages and lymphocytes,2,3 but further studies reported its 

expression also in endothelial and epithelial cells,4,5 smooth muscle cells,6 and cardiac 

myocytes.7 More recent investigations demonstrated that TNF-α is a key proinflam-

matory cytokine and an important part of the innate immune system which, upon 

stimulation of pattern recognition receptors, increases the expression of genes required 

to control tissue inflammation and injury.

The human TNF-α gene, first cloned in 1985,8 is located on chromosome 6p21.3, 

spans about three kb and contains four exons, whereby more than 80% of the secreted 

protein is coded for by the last exon.9 TNF-α is expressed as a 26 kDa transmembrane 

protein arranged in stable homotrimers that are biologically active.10 Upon proteolytic 

cleavage by the metalloprotease TNF-α-converting enzyme (TACE),11 the soluble 

cytokine is released into the extracellular space. This secreted 17 kDa protein forms 

triangular pyramid-shaped trimers and activates two distinct TNF-α receptors,12 ie, 

TNFR1 (p55) and TNFR2 (p75).13,14 TNFR1 is expressed in nearly all cells, and can be 

activated by both the membrane-bound and soluble trimeric forms of TNF-α, whereas 

TNFR2 is found mainly in cells of the immune system and the heart, and responds to the 

membrane-bound form of TNF-α. Both TNF receptors lack intrinsic enzyme activity and 

require the recruitment of adaptor molecules to initiate signaling.13 Upon binding TNF-α, 

TNFR1 forms trimers and the resulting conformational change leads to dissociation of 

the inhibitory protein SODD (silencer of death domains) from the intracellular death 

domain. This dissociation enables the adaptor protein TRADD (TNFR1-associated death 
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domain) to bind to the death domain and to initiate signaling 

by nuclear factor kappa B (NF-κB), mitogen-activated protein 

kinases (MAPKs) or caspases (Figure 1).15,16

During activation of NF-κB, the adaptor protein TRADD 

recruits TRAF2 (TNFR-associated factor 2) and the serine-

threonine kinase RIP (receptor-interacting protein kinase). 

Subsequently, IκB kinase is recruited by TRAF2 and acti-

vated by RIP, and phosphorylates IκBα (inhibitor of κB), 

an inhibitory protein that binds to NF-κB and inhibits its 

translocation. Upon phosphorylation IκBα is degraded, 

releasing the transcription factor NF-κB, which translo-

cates to the nucleus to mediate the transcription of proteins 

involved in cell activation, proliferation, and survival.

Among the three major MAPK cascades, TNF-α 

induces the strongest activation of the c-Jun N-terminal 

kinases (JNKs) responsive to stress stimuli, whereas the 

responses evoked in p38-MAPK and extracellular signal-

regulated kinase (ERK) activation are moderate to low. The 

TRAF2/Rac axis phosphorylates the JNK-inducing upstream 

kinases, which then activate JNK. Upon translocation to the 

nucleus, JNK activates transcription factors such as c-Jun 

and activating transcription factor 2. The JNK pathway is 

involved in apoptosis, neurodegeneration, cell differentia-

tion, and proliferation, but also in more specific regulation of 

cell functions, eg, chemokine production mediated by AP-1 

(activator protein-1), including RANTES (regulated on acti-

vation, normal T-cell expressed and secreted), interleukin-8, 

and granulocyte macrophage colony-stimulating factor.

Although the death-inducing capability of TNF-α is 

weak compared with other TNF family members (such as 

Fas), its binding to TNFR1, which contains an intracellular 

death domain, can induce cell death signaling in certain 

conditions.17 In this process, TRADD binds FADD (Fas-

associated protein with death domain), which then recruits 

caspase-8. A high concentration of caspase-8 induces its 

autoproteolytic activation and subsequent cleaving of effec-

tor caspases, thus mediating cell apoptosis. It must be noted, 

however, that compared with its overwhelming functions in 

the inflammatory response, TNF-α-induced cell death signal-

ing is usually of minor importance in cell physiology.

TNF-α-mediated effects induced by the pathways down-

stream of TNFR1 are often conflicting, indicating an extensive 

Membrane-bound TNF-α

TNFR2

NF-κB AP1

N
F

-κ
B

P

P
IκBα

NF-κBP

IκBα

P

Activation

Dissociation
SODD

Cell death
signaling/apoptosis

FADD
Caspase-8

c-jun

MAP3K

JNK

p38MAPK/
ERK

IKK

T
R

A
F

2

R
IP

PKC

Cytoskeleton
rearrangement

T
R

A
D

D

Immune cell
Soluble TNF-α

Immune cell

T
R

A
F

2

R
IP

PI3K/Akt

Proangiogenic
signaling

Etk

V
E

G
F

R
2

TRADD

TNFR1

Nucleus

Caspase-3

TRAF2
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cross-talk and context dependency. As an example, NF-κB 

enhances the transcription of proteins that interfere with cell 

death signaling. In contrast, activated caspases modulate 

NF-κB signaling by cleaving several components of the 

NF-κB pathway. Furthermore, the balance between proapop-

totic and antiapoptotic signaling can be shifted by activation 

of TNFR2, which uses Etk (endothelial/epithelial tyrosine 

kinase, a non-receptor tyrosine kinase family member), to 

promote cell adhesion, migration, proliferation, survival, and 

angiogenesis. Activation of TNFR2 by TNF-α may lead to 

transactivation of vascular endothelial growth factor recep-

tor 2 and Etk. Subsequently, downstream signaling by PI3K/

Akt (phosphatidylinositol 3-kinase/Akt)v is initiated, which 

stimulates endothelial migration and tube formation.18 Other 

factors, such as increased production of reactive oxygen spe-

cies (ROS), concurrent cytokine/growth factor expression, 

or cell type can additionally modulate the cellular effects of 

TNF-α. Thanks to such complicated regulation of TNF-α 

signaling, various cells with vastly diverse functions can 

respond appropriately to inflammation and injury.13

Role of TNF-α in the  
cardiovascular system
The cardiovascular effects of TNF-α include its effect on 

endothelial function and interactions with inflammatory 

cells, as well as effects on vasodilation, smooth muscle cell 

(SMC) physiology, cardiac myocyte function, and glucose 

homeostasis. Direct evidence of TNF-α-stimulated vascular 

dysfunction was provided by a study of intra-arterial TNF-α 

administration in humans. In healthy volunteers, an acute local 

vascular inflammation was observed upon intra-arterial infu-

sion of high-dose TNF-α (80 or 240 ng/min) for 30 minutes. 

In parallel, impaired endothelium-dependent vasomotion and 

a sustained increase in endothelial tissue plasminogen activa-

tor release were detected.19 Administration of a lower TNF-α 

dose (17 ng/min) for 60 minutes induced an increase in basal 

vascular resistance in healthy subjects, which was blocked by 

pretreatment with a nonselective cyclooxygenase inhibitor or 

a nitric oxide (NO) synthase (NOS) inhibitor.20 The authors 

concluded that the observed effects of TNF-α were likely 

mediated not only by the reduced bioavailability of NO, but 

also by increased cyclooxygenase-dependent production of 

vasoconstrictors, as also reported in more recent studies.21,22

Role of TNF-α in atherogenesis
Vascular injury associated with atherosclerotic disease is char-

acterized by formation and release of inflammatory cytokines, 

activation of ROS production, and reduced availability of NO, 

leading to endothelial dysfunction. Among the proinflammatory 

cytokines, TNF-α is a key player maintaining low-level systemic 

inflammation. Several mechanisms were described that contrib-

ute to the proatherogenic effects of TNF-α on the endothelium, 

including its role in ROS production, reducing the bioavail-

ability of NO, and increasing the endothelial permeability to 

circulating blood components and cells. These proinflammatory 

atherogenic mechanisms are briefly highlighted below.

TNF-α-induced endothelial  
barrier dysfunction
TNF-α regulates vascular permeability in order to control 

inflammation, since the increased permeability of microves-

sels allows blood macromolecules and inflammatory cells to 

enter the injured tissues. However, increased permeability 

also contributes to formation of atherosclerotic plaques, 

which are initiated by the subendothelial accumulation of 

blood lipids and inflammatory cells. TNF-α contributes to 

disruption of the endothelial barrier by several mechanisms. 

Activation of TNFR1 has been reported to induce protein 

kinase C-dependent rearrangement of the actin cytoskeleton,23 

to increase the monomeric to filament actin pool ratio,24 and 

to destabilize microtubules in vitro.25 Destabilization of the 

endothelial cytoskeleton by TNF-α induces formation of 

intercellular gaps26 and leads to a dose-dependent and time-

dependent increase in paracellular movement of macromol-

ecules across endothelial monolayers.26

In parallel with rearrangement of the actin cytoskeleton, 

TNF-α increases tyrosine phosphorylation of vascular 

endothelial cadherin, the key molecule in endothelial cell-

cell contacts, which allows paracellular passage of blood 

macromolecules.27 Another mechanism contributing to 

increased endothelial activation and permeability in response 

to TNF-α is the degradation of glycocalyx.28 Moreover, 

TNF-α was recently shown to increase the transcytosis of 

low-density lipoprotein across human endothelial cells and 

to contribute to early atherosclerosis by enhancing suben-

dothelial retention of low-density lipoprotein in the vascular 

walls of apolipoprotein E-deficient mice.29 These effects of 

TNF-α were substantially blocked not only by transcytosis 

inhibitors, but also by NF-κB inhibitors and peroxisome 

proliferator-activated receptor-γ inhibitors, indicating a 

cross-talk between these pathways.

effects of TNF-α on NO formation  
and bioavailability
NO is the major mediator of endothelium-dependent 

vasorelaxation. In vivo studies demonstrated that 
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endothelium-dependent vasodilation is impaired by TNF-α 

in a NO-dependent manner, in various vessels of the 

arterial tree.30–33 TNF-α decreases the bioavailability of 

NO both by reducing its production31,34,35 and by enhanc-

ing its removal.30 Decreased NO generation results from 

TNF-α-mediated inhibition of endothelial NO synthase 

(eNOS) expression36 and activity. TNF-α signaling sup-

presses gene promoter activity and destabilizes eNOS 

mRNA, thus reducing eNOS protein expression.37,38 These 

processes are mediated by TNFR1 signaling, whereas 

TNFR2 has little effect on eNOS expression.39 Moreover, 

TNF-α decreases NO bioavailability by accumulation 

of the endogenous eNOS inhibitor ADMA (asymmetric 

dimethylarginine)40 and by enhanced removal of NO, for 

example via its reaction with superoxide, in which per-

oxynitrite is generated.41

Role of TNF-α in ROS generation
TNF-α stimulates vascular superoxide production by 

increasing the activity of NADPH-dependent oxidases 

(NOX) in endothelial cells,30,31,42 smooth muscle cells,43 

and neutrophils.44 NOX catalyze the transfer of electrons 

from NADPH to molecular oxygen, resulting in generation 

of superoxide. Other potential sources of TNF-α-induced 

vascular superoxide production include ceramide-activated 

protein kinase, xanthine oxidase,45 lipoxygenase, mitochon-

drial oxidase, and uncoupled eNOS.46

Expression of different NOX subunits (NOX4 [Nox 4A 

and 4B],47 NOX2, NOX548), as well as the regulatory pro-

teins associated with NOX, namely p22phox, p47phox, and 

p67phox, has been described in human arterial endothelial 

cells. Upon exposure to TNF-α, expression of several of 

these proteins (NOX4A, p22phox, p47phox, and p67phox) is 

upregulated, and the activity of NOX is increased by nearly 

threefold.47 NOX activation by TNF-α is furthermore Rac1-

dependent, as shown in endothelial cells in vitro49 and in 

cardiac-specific Rac1-deficient mice.50

Furthermore, studies in human microvascular endothelial 

cells demonstrated that TNF-α induces rapid phosphorylation 

of p47phox, which then binds to TRAF4 and translocates 

to the membrane, resulting in increased p47phox-p22phox 

complex formation and NOX activation. Binding of phos-

phorylated p47phox by TRAF4 occurs in a protein kinase 

C-dependent manner,51,52 which may link superoxide genera-

tion to the pathways involved in endothelial barrier disrup-

tion by TNF-α.53 This is further underscored by the fact that 

TNF-α-induced vascular permeability is prevented by an 

antiperoxynitrite agent.54

Apart from increasing monolayer permeability and 

decreasing NO bioavailability, the generation of superoxide 

upon TNF-α exposure has further implications for induction 

of proatherogenic pathways in endothelium, as activation 

of NOX has been shown to contribute to TNF-α-induced 

NF-κB activation.53

TNFα-induced endothelial- 
leukocyte interactions
Vascular endothelial cells are the primary cellular target 

for the actions of circulating proinflammatory cytokines. 

TNF-α binding to TNFR1 initiates the expression of many 

proinflammatory, proatherogenic proteins55,56 via activation 

of the transcription factors NF-κB and c-Jun/ATF-2,57–60 and 

thus contributes to increased recruitment of leukocytes by 

the endothelium.61

Proinflammatory TNF-α signaling induces rapid endothe-

lial expression of cell adhesion molecules, which mediate the 

recruitment and transmigration of circulating leukocytes into 

the vascular wall.62 Adhesion molecules, including E-selectin, 

vascular cell adhesion molecule 1 (VCAM-1), and intercel-

lular cell adhesion molecule 1 (ICAM-1) are synthesized 

de novo within 30–120 minutes of TNF-α stimulation63 and 

transported to the endothelial surface.

Chandrasekharan et al62 investigated in detail the involve-

ment of the two TNF-α receptors in endothelial adhesion 

molecule expression. Studies utilizing cultured endothelial 

cells derived from wild-type, TNFR2-deficient, or TNFR1-

deficient mice showed that TNFR2 was required for TNF-

α-induced E-selectin, VCAM-1, and ICAM-1 expression. 

Furthermore, TNF-α-stimulated leukocyte rolling, firm 

adhesion to the endothelium, and transmigration were 

dramatically reduced in TNFR2-deficient mice, indicating 

that endothelial TNFR2 is also essential for TNF-α-induced 

leukocyte-endothelial cell interaction.62

Role of shear stress in endothelial 
responses to TNF-α
TNF-α plays an important role in regulating the endothelial 

response to inflammation and injury by promoting migration 

of immune cells into the diseased or injured tissues in order 

to protect the tissues from harmful pathogens, damaged 

cells or irritants. However, the chronic presence of increased 

systemic levels of TNF-α in the context of cardiovascular or 

inflammatory diseases may be deleterious to the endothelium 

in medium and large arteries, where constant low-level stimu-

lation of endothelial activation and vascular permeability 

contributes to atherogenesis. There are several endothelial 
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protection mechanisms that prevent the inflammatory 

response in arteries exposed to TNF-α, the most important 

of them being the signaling pathways activated by laminar 

shear stress (Figure 2).

Laminar shear stress exerts a profound antiapoptotic 

effect on endothelial cells treated with TNF-α via upregula-

tion of NO synthesis64,65 and post-transcriptional activation 

of eNOS.66 Immediately after the onset of shear stress, eNOS 

is activated by phosphorylation at serine 1177 through PI3K/

Akt, which increases NO formation within seconds. More-

over, laminar flow mediates prosurvival signaling by inhibit-

ing TNF-α-induced caspase-3 and JNK activity in vitro and 

ex vivo.67 Downstream of TNFR1, laminar shear stress fur-

thermore reduces c-Jun and NF-κB transcriptional activation 

in vitro.68 Ex vivo studies on perfused rabbit aortas69 showed 

that pre-exposure to laminar shear stress (12 dyne/cm2) 

inhibited TNF-α-induced activation of JNK, p38-MAPK, 

and ERK, and prevented VCAM-1 expression in endothe-

lial cells. Furthermore, laminar shear stress was shown to 

prevent the association of TNFR1 with TRAF-269 and to 

suppress the capacity of TNF-α to induce  proinflammatory 

gene expression in endothelial cells by enhancing induction 

of NF-κB-dependent cytoprotective transcripts.70

In vivo studies showed that endothelial VCAM-1 expres-

sion depends on NF-κB activation in response to disturbed 

shear stress.71 Hajra et al72 detected high levels of NF-κB pro-

teins in endothelial cells at sites of low shear in the aortic arch 

and suggested that these regions may be primed for enhanced 

NF-κB activation in response to proinflammatory agonists. In 

accordance with this, significantly stronger VCAM-1 expres-

sion was detected at the atherosclerosis-prone region of the 

murine aorta (lesser curvature of the aortic arch), as compared 

with the greater curvature region with a low probability of 

atherosclerosis.73 This corresponds to the observation that the 

pattern of shear stress determines the localization of athero-

sclerotic plaques at the arterial wall regions typically charac-

terized by non-uniform blood flow and low shear stress, ie, at 

bifurcations and curvatures. Our in vitro studies demonstrated 

that prolonged preconditioning of endothelial cells with 

either laminar or non-uniform shear stress strongly affects 
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their responsiveness to circulating TNF-α.74 Endothelial cells 

exposed to laminar shear stress were essentially protected 

against TNF-α-induced upregulation of adhesion molecules 

and recruitment of monocytic cells. In contrast, in cells 

exposed to non-uniform shear stress, TNF-α induced a dra-

matic increase in the numbers of adhering monocytic cells, 

and in the expression of VCAM-1 and E-selectin, which was 

sensitive to NF-κB inhibition. These findings indicated that the 

TNF-α-activated signaling pathways are largely convergent 

with non-uniform shear stress-triggered signaling involving 

NF-κB, c-Jun, or AP-1. Additionally, upon exposure to non-

uniform shear stress, endothelial glycocalyx becomes stiffer 

and loses its buffering function,75,76 thus further potentiating 

the glycocalyx-degrading effect of TNF-α.28 Taken together, 

chronic exposure to laminar shear stress strengthens endo-

thelial cell resistance to TNF-α, whereas non-uniform shear 

stress increases endothelial susceptibility to TNF-α stimulus 

( Figure 2).74 In endothelial cells constantly exposed to blood 

flow, shear stress-activated mechanisms are thus major modu-

lators of the biologic responses to cytokines.

Role of TNF-α in apoptosis  
of endothelial cells
TNF-α normally acts as a potent activator of endothelial 

cells (Figure 3) and does not induce endothelial apoptosis.57 

However, when combined with agents that release ceramide 

(eg, ultraviolet irradiation or cytotoxic drugs) or with 

ceramide mimetics such as lipopolysaccharide, TNF-α 

can mediate cell death in endothelial cells.57 According to 

studies by Csiszar et al32,77 in the carotid arteries of young 

rats, recombinant TNF-α elicits endothelial dysfunction, 

oxidative stress, and proinflammatory gene expression. In 

aged coronary arteries, TNF-α expression is increased and 

contributes to apoptosis of endothelial cells by caspase-3 

activation. Furthermore, elevated levels of plasma TNF-α 

during septic shock can induce both microvascular dysfunc-

tion and NF-κB-dependent endothelial apoptosis,78 which 

is associated with the severity and outcome of sepsis. The 

balance between activation and injury of endothelial cells 

induced by TNF-α and other cytokines may thus govern 

local vascular responses to these mediators in disease con-

ditions in vivo.

Role in vascular insulin resistance
Chronic inflammation contributes to vascular insulin 

resistance. Upon binding to its receptor on endothelial cells, 

insulin enhances microvascular perfusion of skeletal muscle 

by activating PI3K/Akt, which mediates an antiapoptotic 

effect and also increases gene expression and activation of 

eNOS.79 TNF-α interferes with endothelial insulin  signaling 
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• Apoptosis

• Decreased contractility
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Figure 3 Schematic presentation of the most important effects elicited by TNF-α in the cells of cardiovascular system.
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and induces insulin resistance both in vivo80 and in vitro.81 In 

bovine aortic endothelial cells, TNF-α increases p38-MAPK 

phosphorylation and potently stimulates serine phosphory-

lation of the insulin receptor, thus inactivating signaling. In 

parallel, insulin-stimulated receptor tyrosine phosphoryla-

tion, Akt phosphorylation, and eNOS activity,81 as well as 

insulin uptake,82 are strongly inhibited by TNF-α in a p38-

MAPK- dependent manner. TNF-α-mediated vascular insulin 

resistance may thus contribute to generalized endothelial dys-

function, eg, in diabetes and the cardiometabolic syndrome.

Effects on vascular smooth muscle 
cells
Phenotypic transition of vascular SMCs from a differentiated 

to a proliferative state during vascular injury and inflamma-

tion plays an important role in early atherosclerosis. TNF-α 

signaling induces SMC migration and proliferation mediated 

by TRAIL, ERK, and p38MAPK activation downstream of 

TNFR1.23,83,84 Moreover, TNF-α stimulates NOX and super-

oxide dismutase in SMCs, thus enhancing the formation of 

ROS and H
2
O

2
, which further induce activation of ERK and 

p38MAPK.85 During the development of atherosclerotic 

lesions, matrix metalloproteinase (MMP)-9 is upregulated 

and is required for migration of SMCs. TNF-α signaling 

upregulates nuclear FoxO4, which in turn activates transcrip-

tion of the MMP-9 gene, inducing the ability of SMCs to 

migrate in vitro and in vivo.86

SMCs are normally resistant to Fas or cytokine-induced 

apoptosis, and even prolonged stimulation with a cytokine 

cocktail (interferon-γ, TNF-α, and interleukin-1β) or sFas 

ligand did not induce any significant change in SMC mor-

phology or viability in vitro.87 However, in the context of 

atherosclerosis, SMCs isolated from the neointima of injured 

rat aorta were characterized by inhibited DNA synthesis and 

a decrease in cell numbers in response to TNF-α, as com-

pared with medial SMCs.88 TNF-α also induced terminal 

dUTP nick end-labeling (TUNEL) positivity and caspase-3 

expression in intimal SMCs, indicating increased cell death 

by apoptosis, whereas medial SMCs were markedly less 

sensitive to the TNF-α stimulus. Apoptosis in intimal SMCs 

was effectively inhibited by treatment with blocking antibod-

ies against TNF-α receptors, suggesting that endogenous 

activation of TNF-α receptors may represent a way to limit 

hyperplasia in injured arteries.88 However, this mechanism 

may also be involved in intimal SMC apoptosis in advanced 

atherosclerotic plaques. Taken together, TNF-α affects SMC 

functions in multiple ways (Figure 3), consequently inducing 

the proatherogenic SMC phenotype.

Role in cardiac myocytes
In healthy individuals, cardiac TNF-α concentrations are 

low and do not affect contractile function.89–91 The presence 

of TNF-α protein and transcripts is usually restricted to 

microvessels in the normal heart.92 However, human cardiac 

myocytes express functional TNFR1 and respond to TNF-α.93 

In vivo administration of exogenous TNF-α exerts cardiode-

pressant effects in rat94,95 and dog96,97 hearts. TNF-α dose-

dependently reduces sarcoplasmic reticulum Ca2+ uptake and 

myofilament Ca2+ sensitivity,98–100 and this effect is mediated 

by p38 MAPK, a negative regulator of cardiac contractility. 

Intracellular calcium handling is suppressed by TNF-α via 

inhibition of sarcoplasmic reticulum calcium adenosine 

triphosphatase expression and activity.101 Furthermore, leak-

age of Ca2+ from the sarcoplasmic reticulum, which contrib-

utes to the depressed Ca2+ transient and reduced contractility 

is also increased by TNF-α.102 This effect is mediated by 

increased activation of cardiac caspase-8, leading to myocar-

dial NO and mitochondrial ROS production, which results in 

S-nitrosylation of the ryanodine receptor and Ca2+ leak from 

the sarcoplasmic reticulum.103 TNF-α exposure is also associ-

ated with another NO-independent, but calcium-dependent, 

early depressant mechanism that is manifested by reduced 

contractile function and cyclic adenosine monophosphate 

response to beta-adrenergic stimulation.104

Apart from reducing contractility in cardiac myocytes 

(Figure 3), TNF-α induces cell hypertrophy manifested by 

cell enlargement, increased global protein synthesis, induc-

tion of sarcomere organization, and expression of embryonic 

genes, such as ANF (atrial natriuretic factor, a marker of 

hypertrophy).105 These phenomena are mediated by acti-

vation of p38MAPK and NF-κB106 in a ROS-dependent 

manner.105,107–109 In line with these findings, in vivo studies 

demonstrated a hypertrophic response in cardiac myocytes, 

leading to left ventricular hypertrophy and dilatation upon 

cardiac-specific overexpression or chronic infusion of high 

doses of TNF-α.94,105,110

Cardiac myocytes have further been shown to undergo 

apoptosis after stimulation with TNF-α in vitro.111 Al-Lamki 

et al92 investigated in detail the independent regulation and 

differential functions of TNFRs in myocardium. In biopsies 

from normal human hearts, TNFR1 but not TNFR2, was 

predominantly and strongly expressed by cardiac myocytes 

and rarely seen in fibroblasts. In organ cultures of the wild-

type mouse heart, TNF-α stimulation upregulated TNFR2, 

activated signaling downstream of both receptors, and caused 

apoptosis and entry into the cell cycle. In TNFR1-deficient 

mouse hearts treated with TNF-α, activation of TNFR2, 
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negligible apoptosis, and increased entry into the cell cycle 

were observed. In contrast, TNFR2-deficient organ cultures 

showed increased TUNEL positivity and lower levels of cell 

cycle entry.92 These findings are thus consistent with TNFR1-

mediated cardiac cell death and TNFR2-mediated repair.

TNF-α in myocardial infarction
Occlusion of coronary arteries rapidly induces expression of 

proinflammatory cytokines, including TNF-α.112 However, 

conflicting findings were reported regarding the role of TNF-α 

in animal models of myocardial infarction (MI). TNF-α defi-

ciency was shown to either decrease113 or have no effect on 

infarct size as compared with wild-type mice.114–117 Similarly, 

TNFR1-deficiency either reduced115 or did not affect infarct 

size.117–119 In a mouse model of coronary ligation, TNFR2-

deficiency did not influence infarct size.118 Interestingly, 

knockout of both TNFRs in mice was shown to increase 

infarct size after 1 day, and this increase was associated with 

enhanced apoptosis of cardiac myocytes.120 These data are 

consistent with the finding that whereas an early increase in 

TNF-α post-MI contributes to stabilization of left ventricular 

function, prolonged stimulation with TNF-α induces left ven-

tricular dysfunction in the later phase post-MI.121 In a recent 

study by Zhang et al, knockouts of TNFR1 or TNFR2 were 

shown to have opposite effects on cardiac function post-MI, 

whereby deletion of TNFR1 improved the cardiac dysfunction 

and the absence of TNFR2 increased the cardiac injury.122 

Thus, both TNFR appear to play an important role post-MI, 

explaining at least in part the conflicting findings from in vivo 

knockout studies. Ideally, upregulation of TNF-α post-MI 

should be rapid and transient, in order to activate expression 

of TNFR2 and cardioprotective signaling. However, chronic 

exposure to increased TNF-α levels leads to TNFR1-mediated 

left ventricular dysfunction and increased MMP-2 activity, 

resulting in degradation of the matrix, and finally increased 

apoptosis of cardiomyocytes.117,123

TNF-α in heart failure
Heart failure is characterized by a debilitating decline 

in cardiac function. TNFR1 signaling is detrimental in 

murine models of heart failure, whereas TNFR2 mediates 

cardioprotection.124 Contractile dysfunction downstream 

of TNFR1 involves ß-adrenergic receptor uncoupling,125 as 

well as increased oxidative stress due to ROS formation and 

enhanced inducible NOS synthesis leading to production of 

NO and peroxynitrite.126 Furthermore, TNF-α downregulates 

the expression of contractile proteins, such as α-myosin 

heavy chain and cardiac α-actin.127 Apart from reducing 

contractility, TNF-α enhances the transcription of hyper-

trophic genes in the failing heart.105 Together with increased 

cardiac myocyte apoptosis128 and cardiac fibrosis,129 this 

hypertrophic effect contributes to structural alterations and 

heart failure. Consequently, long-lasting neutralization of 

TNF-α was shown to attenuate cardiac myocyte hypertrophy 

and adverse myocardial remodeling in a rat model of heart 

failure.130

Contribution of TNF-α signaling  
to hyper/hypotension
In sepsis, massive overproduction of TNF-α provokes life-

threatening refractory hypotension, and according to clinical 

trials, this hypotensive effect constitutes a limiting factor for the 

use of TNF-α as a systemic antitumor agent. Upon adminis-

tration in dogs, TNF-α (at 60 mg/kg body weight) induces 

cardiovascular collapse leading to the lethal shock syndrome.131 

This hypotensive effect of TNF-α is mediated by excessive 

production of NO and ROS and activation of caspase.132

In contrast, a constant low-level increase in TNF-α produc-

tion in the vascular system activates multiple pathways that 

contribute to vasoconstriction and can induce hypertension. 

Serum TNF-α is significantly and independently associated 

with blood pressure in apparently healthy subjects.133,134 In 

a study by Bautista et al,134 mean plasma levels of TNF-α 

were four times higher in hypertensive subjects than in 

non- hypertensive controls. The prevalence of hypertension 

increased progressively from 30% in the lowest TNF-α 

quartile to nearly 53% in the highest quartile, corresponding 

to an almost twofold significant increase in the prevalence.

In physiological conditions, a complex cross-regulation 

between the renin-angiotensin system and TNF-α signaling 

takes place. TNF-α was shown to inhibit renin gene expres-

sion in adrenal cells135 and renal juxtaglomerular cells,136 

although TNF-α deficiency did not affect physiological regu-

lation of renin expression by salt.136 Furthermore, a reduction 

of angiotensinogen production in renal proximal tubular cells 

by TNF-α was reported.137 However, this reduction may be 

counterbalanced by increased angiotensinogen expression 

in hepatocytes,138 which is an important contributor to 

circulating angiotensinogen levels. In the heart, no effects 

of cardiac-specific overexpression of TNF-α on renin or 

angiotensin production were observed, but the activation of 

myocardial renin-angiotensin system was increased, leading 

to enhanced left ventricular remodeling, increased collagen 

content, and apoptosis of cardiac myocytes.139

In multiple animal studies, TNF-α was found to pro-

mote hypertension, both in the presence and absence 
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of renal injury.140,141 According to a recent report, kidney-

derived TNF-α plays a decisive role in promoting the 

angiotensin II-induced increase in blood pressure.142 In a 

mouse model of chronic hypertensive kidney disease, TNF-α 

deficiency resulted in a blunted hypertensive response and 

reduced organ damage, mediated by enhanced eNOS expres-

sion and NO bioavailability. The same effect, along with 

reduced cardiac hypertrophy, was observed in wild-type ani-

mals transplanted with a TNF-α-knockout kidney, confirming 

that TNF-α produced by renal parenchymal cells potentiates 

the hypertensive response by suppressing bioavailability of 

NO within the kidney.

In the vasculature, TNF-α is known to participate 

in vascular contraction, acting either at the level of the 

endothelium or the SMCs. The major pathways involved in 

this effect include those for induction of vasoconstrictive 

preproendothelin-1 mRNA expression and endothelin-1 

protein secretion in endothelial cells.143,144 Activation of 

the NFkB pathway is furthermore responsible for TNFα-

induced upregulation of expression of the endothelin B2 

receptor in SMCs.145 The endothelin B2 receptor mediates 

vasoconstriction146,147 and is not expressed in SMCs under 

normal conditions, but is upregulated in patients with cardio-

vascular disease (eg, peripheral artery disease,148 pulmonary 

hypertension,149 ischemic heart disease,150 and cerebral isch-

emic stroke146), suggesting possible involvement of TNF-α 

signaling. Moreover, TNF-α was reported to induce produc-

tion of thromboxane A2 in endothelial cells21 and SMCs22 and 

to abolish insulin-mediated vasodilation in a JNK-dependent 

manner.151 Taken together, the existing studies indicate that 

TNF-α is an important regulator of blood pressure, both at 

the level of the kidney and at the level of the vasculature 

and myocardium.

Inactivation of TNF-α in  
atherosclerosis, heart failure,  
and inflammatory diseases
TNF-α promotes the inflammatory response, thus con-

tributing to the clinical problems related to cardiovascular 

diseases and autoimmune disorders, which are strongly 

associated with cardiovascular comorbidity. The currently 

available TNF-α inhibitors include two types of biologic 

therapeutics, whereby blockade of TNF-α is achieved using 

either monoclonal antibodies (eg, infliximab, adalimumab, 

certolizumab, golimumab) or a soluble recombinant fusion 

protein consisting of the extracellular ligand-binding 

domain of TNFR2 and the Fc fragment of human IgG1 

(etanercept).

TNF-α blockade in animal models
Experimental data show that genetic inactivation of TNF-α 

diminishes the size of atherosclerotic lesions, both in wild-

type mice deficient in TNF-α and fed an atherogenic diet and 

in apolipoprotein E/TNF-α double-deficient mice, irrespec-

tive of the type of diet.152–155

The effect of anti-TNF-α antibodies on neointima forma-

tion following balloon injury in rabbits was investigated in 

detail by Zhou et al.156 Balloon angioplasty increased tissue 

expression of TNF-α by 100,000-fold over baseline, and 

this increase persisted over 6 days following arterial injury. 

Anti-TNF-α treatment neutralized tissue TNF-α activity by 

60%–75% and suppressed macrophage infiltration, but did 

not inhibit neointima formation.156

Regarding the vascular dysfunction associated with 

increased insulin resistance, inhibition of TNF-α was 

shown to result in a marked increase in insulin sensitivity 

in obese rats. Moreover, neutralization of TNF-α by etan-

ercept significantly reduced TNF-α levels in β2-adrenergic 

receptor-deficient mice, leading to increased insulin recep-

tor tyrosine phosphorylation157 and alleviation of insulin 

resistance.

TNF-α antagonism was also shown to confer cardio-

protection. A single administration of soluble TNFR-Fc fusion 

protein at the time of reperfusion after MI was able to limit 

infarct size and to reduce early left ventricular diastolic dysfunc-

tion in rats subjected to 60 minutes of coronary occlusion.158 

Moreover, systemic TNF-α inhibition was cardioprotective in 

rats subjected to a continuous TNF-α infusion,94 in mice with 

cardiac-restricted overexpression of TNF-α,159 and in animal 

models of heart failure.126,160

Collectively, these preclinical observations suggest that 

blockade of TNF-α might inhibit progression of atheroscle-

rotic lesions, prevent insulin resistance and accelerated ath-

erosclerosis in the metabolic syndrome, and improve clinical 

outcomes in patients with heart failure.

Clinical studies in patients  
with heart failure
Circulating levels of TNF-α and soluble TNFRs are inde-

pendent predictors of mortality in patients with heart 

failure.161 Although preclinical data suggested that TNF-α 

blockade in heart failure would be beneficial, randomized 

trials of anti-TNF-α therapy (etanercept in the RENEWAL 

trial162 and infliximab in the ATTACH trial)163 in human 

heart failure unexpectedly demonstrated a time-related 

and dose-related increase in mortality and heart failure-

related hospitalization. In further studies, the mechanisms 
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of new and/or worsening heart failure in etanercept-treated 

patients were investigated,164 demonstrating a significant 

70-fold increase in plasma levels of immunoreactive TNF-α. 

Moreover, etanercept enhanced TNF-α bioactivity and 

increased the immunoreactive mass of homotrimeric TNF-α 

in heart failure patients, and this was suggested as a potential 

mechanism of the detrimental effects of this therapy in some 

patients.164 In light of the unique and divergent inflamma-

tory responses evoked specifically by each TNF-α receptor 

in the failing heart, global TNF-α inhibition can therefore 

dysregulate both adverse and protective signaling, leading 

to dramatic worsening of cardiac function.

TNF-α antagonism in autoimmune 
diseases
Anti-TNF-α therapy is approved for use in autoimmune 

inflammatory conditions, such as rheumatoid arthritis, 

ankylosing spondylitis, inflammatory bowel disease, and 

psoriasis.165 These disorders are often associated with an 

increased risk of cardiovascular comorbidities, and the 

benefits of TNF-α inhibition, apart from anti-inflammatory 

efficacy and improved survival,166 are thought to include 

cardiovascular protection. Consequently, many studies have 

been conducted to investigate the vascular effects of TNF-α 

inhibition in these patients, and they have produced an abun-

dance of controversial results.

In patients with rheumatoid arthritis, use of anti-TNF-α 

therapy (etanercept or infliximab) was shown to reduce the 

incidence of first cardiovascular events.167 Moreover, in 

rheumatoid arthritis patients with pre-existing cardiovascular 

disease, the risk of heart failure was significantly lower in 

anti-TNF-α-treated patients than in the remaining patients.168 

Other studies reported an increased risk of developing heart 

failure, after adjustment for traditional cardiovascular risk 

factors, in patients who had a higher disease activity score 

at follow-up,169 and a slightly increased relative risk of heart 

failure in a large population of relatively young rheumatoid 

arthritis patients.170

Increased aortic stiffness, an independent predictor of car-

diovascular mortality, is a common feature of inflammatory 

diseases. Several studies have demonstrated improved aortic 

stiffness in patients with inflammatory arthropathies treated by 

TNF-α antagonists,171–174 whereas carotid intima-media thick-

ness was either reduced174 or remained stable.175 In contrast, 

arterial stiffness, lipid profiles, and other traditional cardio-

vascular risk factors were not improved after 6 and 12 months 

of anti-TNF-α therapy in patients with ankylosing spondylitis, 

although the treatment decreased their disease activity.176

Regarding endothelial function, flow-mediated dilata-

tion in patients with inflammatory arthropathies is strongly 

impaired when compared with healthy controls.177,178 

Anti-TNF-α treatment was shown to significantly improve 

endothelium-dependent vasodilation in patients with rheu-

matoid arthritis.175,179,180 Other studies in rheumatoid arthritis 

patients showed a significant but transient effect of infliximab 

infusion on endothelium-dependent vasodilatation, which 

returned to baseline within 2–4 weeks post-infusion.177,181 

Beneficial effects on capillary recruitment and endothelium-

dependent vasodilatation were also reported in ankylosing 

spondylitis patients treated either with etanercept,178 or with 

infliximab, which was furthermore shown to reduce nitrite 

concentrations.182 In contrast, Irace et al reported transient 

vasoconstriction and increased wall shear stress in the com-

mon carotid and brachial arteries following treatment with 

infliximab in patients with rheumatoid arthritis, with no effect 

on flow-mediated dilatation.183 Progression of atherosclerosis 

in psoriatic arthritis patients despite TNF-α blockade was also 

observed; these patients showed no recovery of flow-mediated 

dilatation after 2 years of anti-TNF-α treatment, and their 

serum TNF-α levels were increased at 2 years when com-

pared with baseline.184 There was a significant progression 

in both mean intima-media thickness and mean maximum 

intima-media thickness, despite improvement in the disease 

score and the lipid profile.

The effects of systemic blockade of TNF-α on insulin 

resistance remain controversial. While some studies reported 

improved insulin sensitivity in infliximab-treated patients 

with rheumatoid arthritis,185,186 other authors found that insu-

lin resistance was not alleviated by antagonism of TNF-α.187 

Gonzalez-Gay et al188 suggested that the effects may depend 

on the degree and severity of insulin resistance before the 

start of therapy, whereby the beneficial effect is observed in 

patients with the most severe disease.

In obese insulin-resistant patients, no improvement in 

insulin sensitivity was observed following a single intrave-

nous administration of soluble TNFR-Fc fusion protein.189 

Similarly, no effects of systemic TNF-α blockade on vas-

cular or metabolic insulin sensitivity were detected in either 

healthy obese patients190 or in obese patients with type 2 

diabetes mellitus.191

The effects of direct TNF-α inhibition on lipid metabo-

lism in patients with rheumatoid arthritis are similarly 

controversial: In two independent studies,183,192 adverse effects 

were observed, including elevated triglycerides and reduced 

high-density lipoprotein cholesterol levels. One further study 

in infliximab-treated patients with rheumatoid arthritis and 
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ankylosing spondylitis showed no influence on the overall 

lipid profile.193 In contrast, several studies demonstrated 

increases in serum concentrations of high-density lipoprotein 

cholesterol upon treatment with infliximab.194–196 Similar 

beneficial effects of etanercept treatment on the lipid profile 

were observed in patients with ankylosing spondylitis.197 The 

detailed interplay of the proinflammatory activity of TNF-α 

with insulin resistance and lipid metabolism in the context of 

atherosclerosis and cardiometabolic disorders thus warrants 

further investigation.

Toward the next generation  
of anti-TNF-α therapies
The currently available TNF-α blockers neutralize the activ-

ity of soluble TNF-α and prevent its binding to both TNFR1 

and TNFR2. Although these compounds are effective in the 

treatment of inflammatory arthritis, ankylosing spondylitis, 

and psoriasis, long-term use of TNF-α blockers can have 

adverse effects due to inhibition of the pleiotropic functions 

of TNF-α. Safety considerations here include an increased 

incidence of pulmonary and skin infections, new-onset 

autoimmune diseases, malignancies, and congestive heart 

failure, resulting from inhibition of the immunomodulatory 

effects of TNF-α.198 Since many of the pathological and 

protective signals diverge either at the ligand level (soluble 

versus membrane-bound TNF-α) or at the receptor level 

(TNFR1 or TNFR2), selective blockade of soluble TNF-α 

or of TNFR1 signaling has been postulated to be preferable 

to complete TNF-α blockade in the treatment of chronic 

inflammatory diseases.199,200

Based on the results obtained in animal models of myo-

cardial infarction122 and rheumatoid arthritis,201 therapeutic 

strategies that target TNFR1 while sparing TNFR2 are 

expected to both inhibit inflammation and promote the activ-

ity of regulatory T-cells, and might be superior to systemic 

TNF-α blockade. Consequently, there is a growing interest in 

use of specific receptor-targeting compounds as anti-TNF-α 

therapeutic agents. These compounds are still in the research 

and development phase, but many recent studies in animal 

models of inflammatory disease indicate that increased 

therapeutic benefit and a reduced risk of side effects can be 

achieved by specific inhibition of soluble TNF or TNFR1, 

while leaving TNFR2 signaling fully functional. A variety of 

approaches to the pharmacological blockade of TNFR1 have 

been proposed thus far, among them monoclonal antibod-

ies (atrosab)202 and antagonistic TNF-α mutants specific for 

TNFR1.203,204 Therapeutic administration of soluble TNFR1 

PLAD (preligand-binding assembly domain) protein potently 

inhibited inflammatory arthritis in animal models.205 In 

addition to these inhibitory strategies, a short hairpin RNA 

directed against TNFR1 was successfully used to downregu-

late TNFR1 expression and to reduce experimental arthritis 

in vivo.206

Furthermore, several reports from the field of targeted 

drug delivery and nanomedicine appear to open promising 

possibilities for local or tissue-targeted TNF-α gene silencing. 

Two different topical delivery systems (cationic amphiphilic 

lipid particles207 and capsaicin-loaded cationic lipid-polymer 

hybrid nanoparticles)208 have recently demonstrated efficacy 

in local transport of anti-TNF-α small interfering (si)RNA 

and in the treatment of experimental psoriasis. Moreover, the 

problem of insufficient endothelial siRNA transfection effi-

ciency in vivo has recently been overcome by Dahlman et al,209 

who developed a polymeric nanoconstruct (7C1) capable of 

delivering siRNAs specifically to endothelial cells, which 

allowed concurrent silencing of multiple endothelial genes. 

This approach was successfully utilized for the purpose of 

RNA-based therapies, as demonstrated in animal models of 

various diseases involving endothelial dysfunction.209 It seems 

plausible that the combination of specific siRNAs with local 

delivery systems that allow blocking of TNF-α/TNFR1 signal-

ing in vascular cells without affecting gene expression in other 

tissues or immune cells may prove a safe and efficient strategy 

to control cardiovascular inflammation in the future.

Conclusion
TNF-α-induced signaling plays an important role in the 

cellular response to inflammation and injury, being central 

to the development and homeostasis of the immune system. 

The protective mechanisms induced by TNF-α include the 

host defense against infections and its inhibitory role in 

tumorigenesis. However, persistent overproduction of TNF-α 

has deleterious effects on tissues by inducing a chronic 

inflammatory response. In the cardiovascular system, TNF-α-

activated signal transduction pathways contribute to vascular 

dysfunction, atherogenesis, hypertension, and adverse car-

diac remodeling after myocardial infarction. The existing 

clinical studies seem to support the notion that treatment 

with anti-TNF-α may have a favorable effect on endothelial 

dysfunction and atherosclerotic processes in patients with 

inflammatory arthropathies. However, an increased risk of 

heart failure, as a consequence of systemic TNF-α blockade, 

remains a major concern in patients with cardiovascular 

disease. Selective inhibition of TNFR1 with specific antibod-

ies, antagonists, or siRNAs provides a promising opportunity 

to neutralize the proinflammatory, proatherogenic effects of 
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TNF-α, while maintaining the cardioprotective immuno-

modulatory responses mediated by TNFR2. Further studies 

on TNF-α inhibition in atherosclerosis and cardiometabolic 

disease are therefore urgently needed in order to assess the 

safety and efficacy of novel therapeutic strategies focused 

on blocking the responses specific to TNFR1, as compared 

with global TNF-α inhibition.
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